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Abstract. Heat waves are among the most severe climate extreme events. In this study, we address the impact of increased 

model resolution and tailored model settings on the reproduction of these events by evaluating different regional climate model 15 

outputs for Germany and the near surroundings between 1980–2009. Both, outputs of an ensemble of six EURO-CORDEX 

models of 12.5 km grid resolution and outputs from a high resolution (5 km) WRF run are employed. The latter was especially 

tailored for the study region regarding the physics configuration. We analyze the reproduction of maximum temperature, 

number of heat wave days, heat wave characteristics (frequency, duration and intensity), the 2003 major event and trends in 

the annual number of heat waves. E-OBS is used as reference and we imply Taylor diagram, Mann-Kendall trend test, spatial 20 

efficiency metric and cumulative heat index as a measure for intensity. Averaged over the domain, heat waves occurred about 

31 times in the study period with an average duration of 4 days and average heat excess of 10 °C. Maximum temperature was 

reproduced reasonably well by all models. Despite the same forcing, the models exhibited a large spread in the heat wave 

reproduction. The domain mean conditions of heat wave frequency and duration were captured reasonably well, but intensity 

was reproduced weakly. The spread was particularly pronounced for the 2003 event, indicating the difficulty of models to 25 

reproduce single major events. All models underestimated the spatial extent of the observed increasing trends. WRF mostly 

did not perform significantly better than the other models. We conclude that increased model resolution does not add a 

significant value to heat wave simulation if the base resolution is already relatively high. Tailored model settings seem to play 

a minor role. The partly distinct differences in performance, however, highlight that the choice of model can be crucial.  

1 Introduction 30 

Heat waves are climatological extreme events with severe negative impacts on organisms and ecosystems. Their effects can 

be illness, large-scale mortality, substantial losses in agricultural production, forest fires and increased energy demand for 

cooling (Beniston et al., 2007; De Bono et al. 2004; Ciais et al., 2005; Robine et al., 2008; Kyselý et al., 2011; Bastos et al., 

2014; Urban et al., 2017). Especially in the midlatitude zones, heat waves are regarded as a major cause of weather-related 
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human mortalities (Luber, 2008; Plavcová and Kyselý, 2019). In Europe, they are a regular part of the summer climate (Vautard 35 

et al., 2013), and an increasing trend in the number of summer heat waves was reported for the recent decades with prolonging 

tendency (Della-Marta et al., 2007; Kyselý, 2010; Valeriánová et al., 2015; Saeed et al., 2017). According to Fischer and Schär 

(2010), the frequency and length of heat waves have nearly tripled and doubled, respectively, over the period 1880 – 2005 in 

Western European regions. Especially since the millennium, Europe experienced multiple extraordinary heat waves (Lhotka 

et al., 2018b). Two of the most prominent events were the heat episodes in 2003 over Western Europe (Fink et al., 2004) and 40 

the 2010 event over Eastern Europe and Russia (Schneidereit et al., 2012). In the more recent past, severe summer heat episodes 

took place in Central Europe in 2013 (Lhotka and Kyselý, 2015b), 2015 (Hoy et al., 2016) and especially in 2018 (e.g., Vogel 

et al., 2019, Rousi et al., 2022). In the context of climate change, heat waves are expected to become more frequent, more 

intense and longer lasting in the future around the globe (Meehl and Tebaldi 2004; Lau and Nath 2014; Lemonsu et al. 2014; 

Seneviratne et al., 2014; Diffenbaugh and Ashfaq 2010). Coumou and Rahmstorf (2012) estimate the probability of severe 45 

events like 2003 over Western Europe has increased by a factor of 2 – 4 because of global warming. Shifts of the temperature 

distribution are considered as the primary drivers of these changes (Ballester et al., 2010; Lau and Nath, 2014). According to 

Fischer and Schär (2010), larger variance of summer temperature distribution in future climates are also possible drivers. 

Lhotka et al. (2017) additionally emphasize increased temporal autocorrelation of daily maximum temperature, which leads to 

more persistent heat waves, as potential drivers.   50 

To analyze and understand such changes at the regional scale and to allow projections for future characteristics of the heat 

wave events, regional climate models (RCMs) are used. For better interpretation of future climate scenarios and their 

uncertainties and limitations, it is important to evaluate RCM simulations for the recent or historical climate to detect biases, 

which are usually present, despite the added value compared to GCMs (Lhotka et al., 2018a; Plavcová and Kyselý, 2019; Lin 

et al., 2022). The availability and reliability of RCM simulations have rapidly evolved in the last years (Štepánek et al., 2016). 55 

This is also due to concerted downscaling projects and initiatives such as PRUDENCE (Christensen and Christensen, 2007), 

ENSEMBLES (van der Linden and Mitchell, 2009) and most recently CORDEX (Giorgi et al., 2009). In the recent past there 

have been several heat wave related studies using data from the CORDEX initiative for different parts of the world with focus 

on both, past periods and future scenarios. For the EURO-CORDEX domain, a focus was put on the evaluation of the RCM’s 

capability in simulating past heat episodes in France (Ouzeau et al., 2016) and all of Europe (Vautard et al., 2013; Lhotka et 60 

al., 2018a; Plavcová and Kyselý, 2019; Lin et al., 2022) as well as on the development of future episodes under different 

scenarios for Portugal (Cardoso et al., 2019), France (Ouzeau et al., 2016), the Mediterranean area (Molina et al., 2020) and 

all of Europe (Lhotka et al., 2018b; Smid et al., 2019; Machard et al., 2020; Lin et al., 2022). Regarding the rest of the globe 

and the other CORDEX domains, evaluation studies have been carried out for Africa (Russo et al., 2016), East Asia (Wang et 

al., 2019b) and South America (Silva et al., 2022). Furthermore, projection studies were performed for Africa (Dosio, 2017), 65 

Afghanistan (Aich et al., 2017), South America (Feron et al., 2019), China (Wang et al., 2019a), the MENA region (Varela et 

al., 2020), the Eastern Mediterranean (Wedler et al., 2023), East Asia (Kim et al., 2023) as well as for the entire globe (Coppola 

et al., 2021). In the mentioned studies, different horizontal grid resolutions of the models were used and the effects of increased 
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resolution were often analyzed, which led to different findings: Zeng et al. (2016) and Vichot-Llano et al. (2021), for example, 

found that higher resolution leads to better reproduction of temperature fields, while Di Luca et al. (2013) came to the 70 

conclusion that the potential for added value of increased resolution is small. It is important to consider the differences between 

the compared resolutions in such studies (Petrovic et al., 2022). Besides the model resolution, the model setup regarding the 

domain configuration and physical parameterizations for the selected target region is a crucial factor for reliable simulations 

(e.g., Stoelinga et al., 2003; Kumar et al., 2010). For the temperature simulation, Vautard et al. (2013) found that it is primarily 

sensitive to convection and microphysics schemes. They emphasize that a large part of the model spread in their study can be 75 

attributed to different parameterizations. Moreover, they draw a connection between parameterizations and different spatial 

resolutions. Mooney et al. (2013) found that simulated temperature showed relatively high sensitivity to the land surface 

models, some sensitivity to the radiation schemes and little sensitivity to the microphysics and planetary boundary layer (PBL) 

schemes. They concluded a strong dependence on the region and season of the optimal parameterization combination. Kotlarski 

et al. (2014) state that bias spreads between different configurations of the same model can be similar to those between different 80 

models.  

To our knowledge, there is no study that presents an evaluation of the EURO-CORDEX RCM’s capability to reproduce heat 

wave characteristics for Germany, which has motivated us to perform this analysis. At the same time this study is the follow-

up to the model comparison study for droughts from Petrovic et al. (2022). The thematic proximity is obvious, since heat and 

drought are often, but not always, related to each other. We analyze a variety of RCM simulations, i.e., a 5 km three-domain 85 

Weather Research and Forecasting Model (WRF, Skamarock et al., 2008) run and an ensemble of six EURO-CORDEX 

realizations at 12.5 km horizontal resolution. The setup for the WRF model was thoroughly determined for Germany. 

Intuitively, one would expect better performance in simulating hot temperature from WRF due to the higher resolution and the 

focus on the target region compared to the EURO-CORDEX runs. The WRF model was shown to be capable of simulating 

spatiotemporal features of heat wave events over a large domain (Wang et al., 2019b). To attribute to a resolution or settings 90 

effect of the WRF model performance, we additionally include a 15 km domain configuration in our analysis which is slightly 

coarser than for the EURO-CORDEX standard. Therefore, following up on the drought study (Petrovic et al., 2022), the 

objectives of this study are:   

1. Evaluation of the performance of regional climate models in reproducing hot temperatures and associated heat wave 

characteristics by employing a six-member EURO-CORDEX ensemble and a high resolution WRF run. The EURO-CORDEX 95 

RCMs and WRF differ in resolution, while the model physics configurations differ among every single RCM.  

2. Obtaining insights into the heat wave course for Germany and its near surrounding between 1980 and 2009.  

For this purpose, the results are evaluated and compared to observations. Specifically, we analyze reproduction of daily 

maximum temperature, the number of heat wave days, heat wave characteristics (frequency, duration and intensity), trends in 

the number of heat waves per year and the heat wave event in 2003. 100 

Moreover, we can compare the new core findings for heat waves with those from the aforementioned drought analysis (Petrovic 

et al., 2022) in terms of similarities and differences.  
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2 Data  

In this study, data from the same sources as in Petrovic et al. (2022) is used. While in that study monthly data of precipitation, 

minimum and maximum temperature was used, here the daily values of the maximum (surface) temperature (Tmax) are 105 

employed. 

We use data from an ensemble of six EURO-CORDEX RCM simulations. Each of the experiments were conducted with 0.11° 

(≈ 12.5 km) horizontal grid resolution and cover the EUR-11 CORDEX-Domain. Outputs from the following RCMs were 

used: COSMO-CLM, ALADIN 6.3 (hereafter referred to as ALADIN in the text), REMO2015 (REMO), RegCM 4.6 

(RegCM), RACMO 2.2e (RACMO) and RCA4. All the runs obtained the boundary conditions from the global ERA-Interim 110 

reanalysis (Dee et al, 2011). When this analysis was initiated, these runs were the only ones that cover the study period 1980–

2009 and contain the relevant meteorological variables.  

In addition to the EURO-CORDEX data, we included the outputs from the ERA-Interim forced reanalysis WRF run for the 

time period 1980 – 2009 from Warscher et al. (2019). These simulations were preceded by a comprehensive search and final 

identification of optimal model physics and parameterization configuration for the target region Germany (Wagner and 115 

Kunstmann, 2016). This is the first major difference to the EURO-CORDEX outputs, which were aimed at the entire EUR-11 

CORDEX-domain (Giorgi et al., 2009). The horizontal grid resolution of the innermost domain, which frames Germany and 

the near surroundings, is 5 km. This increased resolution is the second major difference to the EURO-CORDEX outputs. As 

mentioned above, we also used the outputs from the 15 km second WRF domain of the same run. Therefore, we will refer to 

WRF@5 km and WRF@15 km from here on to distinguish between the two runs. 120 

More detailed information about the EURO-CORDEX RCMs and an overview of the different model physics configurations 

for all runs can be obtained from Table 1 and 2 in Petrovic et al. (2022). The gridded observational data set from E-OBS 

(Haylock et al., 2008), version 23.1e, in 0.1° (≈ 11.1 km) horizontal grid resolution serves as reference.  

The study region extends from 6° to 15° E and 47° to 55° N, so that it contains Germany and its near surroundings. The WRF 

and E-OBS data were regridded using bilinear interpolation to match the horizontal grid resolution of the EURO-CORDEX 125 

RCMs. 

3 Methods 

3.1 Analysis of daily maximum temperature reproduction 

Since Tmax is the main variable determining heat waves, the grid cell based summer values (June, July, August) are first 

analyzed. We use the Taylor diagram (Taylor, 2001), which provides a succinct visual statistical summary in terms of 130 

agreement between patterns regarding their correlation, their root-mean-square difference, and the ratio of their variances or 

standard deviations (Taylor, 2001). Moreover, we calculate the density plot to visualize and compare the distributions of the 

values of the individual data sets. From spatially and temporally averaged daily values, we calculate the mean bias values to 
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be able to draw conclusions about the role of the model bias for the further results. It must be noted that not only a good 

simulation of the right tail of the temperature frequency distribution is of importance for the reproduction of heat waves, but 135 

also the persistence of the high temperatures (Lhotka et al., 2018a).  

3.2 Heat wave definition 

There is no universal definition of heat waves. In fact, there are multiple definitions that include different metrics and criteria 

depending on the region, season and purpose of the study (Feron et al., 2019; Becker et al., 2022). Generally, it describes a 

period of consecutive days with conditions excessively higher than normal (Perkins et al., 2012). Here, we define a heat wave 140 

as an event of at least three consecutive days where the 90th percentile of Tmax based on each calendar day of the study period 

is exceeded (Fischer and Schär, 2010). Therefore, the 90th percentile for each calendar day and each grid cell from each data 

set was calculated first. This was done for each dataset individually to circumvent the Tmax biases among the different models 

(Vautard et al., 2013; Lhotka et al., 2018b). We only addressed summer heat waves in this study. 

3.3 Analysis of heat wave characteristics 145 

Based on the heat wave definition described above, we calculate the number of heat wave days and number of heat waves for 

each grid cell for the whole study period 1980 – 2009. Based on the number of heat wave days and heat waves, we determine 

the mean duration of heat waves for each grid cell from each data set. In order to describe the mean heat wave intensity, we 

use the cumulative heat index as a measure (e.g. Katavoutas and Founda, 2019; Perkins-Kirkpatrick and Lewis, 2020; Founda 

et al., 2022). It refers to the integration of heat exceedance over the 90th percentile threshold for all heat wave days during a 150 

heat episode or whole season:  

𝐶𝑢𝑚𝐻𝑒𝑎𝑡 = ∑ ∆(𝑇𝑚𝑎𝑥,𝑖 −  𝑇𝑚𝑎𝑥,𝑃90,𝑖)
𝑛
𝑖=1                               (1) 

where 𝑖 indicates the calendar day of the heat wave event and 𝑇𝑚𝑎𝑥,𝑃90,𝑖 the 90th Tmax percentile of day 𝑖, for each grid cell. To 

get the mean intensity of heat waves, we integrated all excess values for the whole study period and divided the results by the 

number of heat waves for each grid cell of each data set. For each of the single aspects (number of heat wave days and heat 155 

waves, mean heat wave duration and mean heat wave intensity) we calculate the domain mean value for every data set. In the 

next step, we subtract the E-OBS reference domain from each RCM domain to get the bias patterns and also calculated the 

domain mean values. To further evaluate the spatial agreement between reference and each RCM, we utilize the spatial 

efficiency (SPAEF) metric (Demirel et al., 2018; Koch et al., 2018). The SPAEF is a multiple components performance metric 

for the comparison of spatial patterns. It is calculated as: 160 

𝑆𝑃𝐴𝐸𝐹 = 1 − √(𝛼 − 1)2 +  (𝛽 − 1)2 + (𝛾 − 1)2  (2) 

with the three components α as the Pearson correlation coefficient between observed (obs) and simulated (sim) patterns, 

𝛽 =  (
𝜎𝑠𝑖𝑚

𝜇𝑠𝑖𝑚
) (

𝜎𝑜𝑏𝑠

𝜇𝑜𝑏𝑠
)⁄                                              (3) 

as the fraction of coefficient of variation representing spatial variability and  
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𝛾 =  
∑ min (𝐾𝑖, 𝐿𝑖)𝑛

𝑖=1

∑ 𝐾𝑖
𝑛
𝑖=1

                                               (4) 165 

as the overlap between the histograms of the observed (K) and simulated patterns (L), both containing the same number n of 

bins. For the calculation of 𝛾 the z score of the patterns is used, which allows comparison of two variables with different units. 

For both histograms of K and L, the number of values in each bin i is counted. Afterwards for each bin the lower (minimum) 

number of Ki or Li is picked, which indicates the number of shared values in the same bin. Thereafter these numbers are 

summed up and divided by the total number n of values in K or L. The SPAEF has a predefined range between -∞ and 1, where 170 

1 corresponds to ideal agreement between two patterns. The three components are independent of each other and typically 

equally weighted so that they complement each other in a meaningful way and provide holistic pattern information. By this 

way, instead of exact values on the grid scale, global features such as distribution and variability are evaluated (Koch et al., 

2018). 

3.4 Heat wave trend analysis 175 

In order to investigate the temporal characteristics of heat waves occurrences, we apply the non-parametric Mann-Kendall 

trend test approach (Mann, 1945; Kendall, 1975). For this purpose, we first count the number of heat waves per year for each 

grid cell to obtain the annual development. Then on the resulting time series of each grid cell the test is applied to detect 

significant monotonic trends at a significance level of 0.05. The Mann-Kendall test is based on the correlation between the 

ranks of a time series and their time order. 180 

For a time series 𝑥1, 𝑥2, 𝑥3 … 𝑥𝑛, the Mann-Kendall test statistic S is given by 

𝑆 =  ∑ ∑ 𝑠𝑖𝑔𝑛(𝑥𝑗 − 𝑥𝑖)𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1      (5)  

with  

𝑠𝑖𝑔𝑛(𝑥𝑗 − 𝑥𝑖) = 𝑠𝑖𝑔𝑛(𝑅𝑗 − 𝑅𝑖) = 1 if 𝑥𝑗 − 𝑥𝑖 > 0  (6) 

𝑠𝑖𝑔𝑛(𝑥𝑗 − 𝑥𝑖) = 𝑠𝑖𝑔𝑛(𝑅𝑗 − 𝑅𝑖) = 0 if 𝑥𝑗 − 𝑥𝑖 = 0  (7) 185 

𝑠𝑖𝑔𝑛(𝑥𝑗 − 𝑥𝑖) = 𝑠𝑖𝑔𝑛(𝑅𝑗 − 𝑅𝑖) = −1 if 𝑥𝑗 − 𝑥𝑖 < 0              (8) 

where sign represents an indicator function, n the number of data points and Ri and Rj their respective ranks. A positive S-

statistic indicates an increasing trend, a negative one indicates a decreasing trend. 

3.5 The 2003 heat wave event 

The heat wave and drought event in the summer months of 2003 in Central Europe is considered as one of the most severe 190 

extreme events in the last decades. It has caused 70,000 excess deaths (Poumadere et al. 2005; Robine et al., 2008), distinct 

decrease of plant productivity and crop failures (Bastos et al., 2014) and record breaking loss of Alpine glaciers’ mass (De 

Bono et al., 2004). This is why the event is also considered a ‘mega heat wave’ (Barriopedro et al. 2011; Vautard et al., 2013). 

https://doi.org/10.5194/nhess-2023-91
Preprint. Discussion started: 19 June 2023
c© Author(s) 2023. CC BY 4.0 License.



7 

 

We investigate the capability of the RCMs to reproduce such a single extreme event in terms of intensity and maximum 

duration. Therefore, we calculate the cumulative heat for the whole summer period 2003 and determined the maximum duration 195 

of the heat episodes during this time for each grid cell. The results in this section are also evaluated based on the domain mean 

values, mean bias values and the SPAEF. 

4. Results 

4.1 Daily maximum temperature reproduction 

Figure 1 shows the Taylor diagram of the grid cell based Tmax values from each data set for the summer months. There is an 200 

obvious difference between the EURO-CORDEX RCMs and the two WRF runs. In terms of correlation with the E-OBS 

reference, the two WRF runs stand out with values above 0.9. The 15 km WRF run shows a slightly higher value than its 5 km 

counterpart. The EURO-CORDEX RCMs reach values between 0.65 and 0.8. RACMO holds the highest value, RegCM the 

lowest. Regarding the root mean square error (RMSE), all RCMs have a value below 5. Again, there is a significant difference 

between the WRF runs and the EURO-CORDEX RCMs, since the WRF runs have distinctly lower values below 2. The 15 205 

km run is slightly better than its 5 km counterpart. The values of the EURO-CORDEX RCMs are relatively close to each other. 

RACMO holds the lowest RMSE value, and ALADIN the highest. As far as the agreement of the standard deviation with the 

reference is concerned, there is a large discrepancy among the EURO-CORDEX RCMs. RACMO comes closest to the 

reference, ALADIN’s standard deviation shows the biggest difference. RACMO’s standard deviation shows even a greater 

match than the WRF runs, the same goes for COSMO-CLM. Once again, the WRF@15 km run is closer to the reference than 210 

its 5 km counterpart. This underlines that the temporal variability is better captured in the coarser resolutions. The results 

suggest that the WRF model settings are determining for the better performance compared to the EURO-CORDEX RCMs. 

RACMO is the best performing EURO-CORDEX RCM, ALADIN the worst.  
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Figure 1. Taylor diagram comparing the model performances in reproducing the daily summer Tmax values in relation to the 215 

E-OBS reference for the study period 1980–2009 and the whole study area. 

Figure 2 displays the density plot of the summer Tmax values from each data set. There are pronounced differences between 

the single distributions in general, but also at the right tail, which is in focus here. Until approx. 10 °C all distributions are 

relatively similar, the discrepancies begin hereafter. Compared to E-OBS, RCA4 and RACMO are clearly shifted leftwards. 

Apart from these two models, all other data sets have most of their values in the range between 20 and 25 °C. ALADIN and 220 

RegCM are shifted towards the right compared to E-OBS, especially in the right tail area from approx. 30 °C on, in which they 

clearly have more values than all other runs and E-OBS. In this area, REMO shows high agreement with E-OBS, while 

WRF@5 km and RCA4 have the least amount of values here. The overall differences between the two WRF runs are distinct. 

The 15 km run is closer to E-OBS than its 5 km counterpart and it has more values in the right tail of its distribution.  
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 225 

Figure 2. Density plot of the summer Tmax values from each data set. 

Table 1 gives the bias values of the spatially and temporally averaged maximum temperature values for each RCM. Five runs, 

COSMO-CLM, RACMO, RCA4 and the two WRF runs, show cold mean bias values, the other runs warm ones. The highest 

negative value is found at RCA4 (-2.40 °C), which is also the highest overall value, followed by RACMO (-1.37 °C). This 

could be inferred by the density plot in Figure 2. This is also true for the highest positive bias values of ALADIN (1.19 °C) 230 

and RegCM (1.62°C). COSMO-CLM (-0.16 °C) holds the lowest bias value. The overall spread is 4.02 °C between RegCM 

and RCA4.  

 

Table 1. Spatially and temporally averaged daily Tmax bias values with respect to E-OBS. 

Model Tmax Bias [°C]  

COSMO-CLM -0.16 

ALADIN 6.3 1.19 

REMO2015 0.70 

RegCM 4.6 1.62 

RACMO 2.2e -1.37 

RCA4 -2.40 

WRF@5 km -0.93 

WRF@15 km  -0.58 

 235 

https://doi.org/10.5194/nhess-2023-91
Preprint. Discussion started: 19 June 2023
c© Author(s) 2023. CC BY 4.0 License.



10 

 

4.2 Number of heat wave days 

Figure 3 presents the E-OBS pattern of the number of heat wave days for the time period 1980 – 2009 along with the grid cell 

based differences between each RCM and E-OBS. Table 2 provides more detailed information.  

 

Figure 3. Grid cell based E-OBS number of heat wave days pattern for the summer months between 1980–2009 and differences 240 

between each RCM and E-OBS. 

In the E-OBS domain the highest values are located in the northern, northeastern and southwestern parts with up to 160 heat 

wave days. The minimum values range between 80 and 90 days and are distributed punctually all over the domain. There is 

no clear area characterized by low values. The domain mean value is 122 days (Table 2). The RCM difference patterns show 

distinct differences among each other. It is noticeable that some of the domains either largely show a “colder” bias (WRF@5 245 

km), which means that they simulated less heat wave days compared to the reference, or a “warm” bias (COSMO-CLM, 

ALADIN and RegCM), meaning that they simulated more heat wave days. REMO, RACMO and RCA4 have a rather mixed 
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domain. It is striking that the two WRF domains are the only ones predominated by colder values. The majority of the values 

across all domains range between -60 to 60 days of difference. COSMO-CLM, ALADIN, RegCM and RACMO have relatively 

similar bias values in the western parts of the domain. Other than that, there are no repeating patterns across a majority of the 250 

RCMs. In the WRF@15 km domain there are significantly more warm bias areas compared to its 5 km counterpart, which is 

also confirmed in Table 2, where the mean bias value of the 15 km run is much closer to 0 (-8.7 compared to -20.9 days). 

These warm bias areas are mainly located in the western, eastern and southeastern parts of the domain. The values in Table 2 

confirm the impressions from Figure 3: the domain mean values from all EURO-CORDEX RCMs are above the E-OBS 

reference value (122 days), with the COSMO-CLM value showing the biggest difference (42 days). The two WRF runs are 255 

below the reference (102 and 114 days). The values of REMO and RCA4 (both 130 days) and WRF@15 km come closest to 

the reference. Regarding the mean bias values, the inferred negative values from the two WRF runs are visible, while the 

EURO-CORDEX RCMs all show positive mean bias values. COSMO-CLM has the by far the highest bias value (41.8 days), 

REMO shows the lowest value (7.3 days). It should be kept in mind here that for RCMs that are not dominated by one bias 

direction, the values can cancel each other out and provide a small overall mean bias. This is the case for REMO, RACMO 260 

and RCA4. The SPAEF values give information about the pattern agreement between the reference and the individual RCMs 

(not shown here). There is not a single high value. The values are either negative or very low, meaning that there is no good 

overall spatial agreement from any RCM with the reference. REMO has the highest value (0.19), WRF@ 15 km the lowest (-

0.19).  

 265 

Table 2. Number of heat wave days metrics. 

Model Mean [n days] Mean Bias [n days] SPAEF 

COSMO-CLM 164 41.8 -0.09 

ALADIN 6.3 149 26.2 0.03 

REMO2015 130 7.3 0.19 

RegCM 4.6 153 31 -0.15 

RACMO 2.2e 132 9.4 0.07 

RCA4 130 7.8 0.01 

WRF@5 km 102 -20.9 -0.11 

WRF@15 km 114 -8.7 -0.19 

E-OBS  122 
  

 

There are no apparent benefits of the WRF runs visible compared to EURO-CORDEX RCMs. This suggests that neither the 

increased grid resolution nor the model setup have a decisive effect on the reproduction on the number of heat wave days. In 

fact, the WRF@15 km performed better than its 5 km counterpart, which further underlines that the grid resolution might play 270 
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a less important role for this aspect. REMO is the RCM with the overall best performance due to the best values in all regards 

(Table 2), COSMO-CLM performed worst. 

4.3 Heat wave characteristics 

4.3.1 Heat wave frequency 

Figure 4 shows the E-OBS pattern of the number of heat waves for the time period 1980 – 2009 and the grid cell based 275 

differences with the RCMs. The relevant scores are given in Table 3. 

 

Table 3. Heat wave frequency metrics. 

Model Mean [n heat waves] Mean Bias [n heat waves] SPAEF 

COSMO-CLM 29.7 -1.16 -0.14 

ALADIN 6.3 31.2 0.31 -0.12 

REMO2015 30.5 -0.33 -0.04 

RegCM 4.6 33.4 2.57 -0.24 

RACMO 2.2e 31.2 0.38 -0.22 

RCA4 29.2 -1.71 -0.25 

WRF@5 km 26.7 -4.14 -0.25 

WRF@15 km 29.5 -1.37 -0.25 

E-OBS  30.9 
  

 

The E-OBS domain looks mostly uniform with the majority of values ranging between 26 – 34 heat waves. The domain mean 280 

value (30.9) in Table 3 underlines this. Only in the north and south there are small concentrations of higher values up to 40 

heat waves. The RCM bias domains show rather mixed patterns with both, positive and negative values. RegCM (positive) 

and WRF@5 km (negative) are the only domains where one direction in bias predominates. This is also reflected in the mean 

bias values in Table 3, where these two RCMs have the highest values (2.57 and -4.14), while at the other domains the opposite 

signs tend to cancel each other out, bringing them closer to zero on average. The northern part of all bias domains is 285 

predominated by negative bias values. It is also noticeable that in the eastern part of the domain only positive values prevail 

in RegCM, while negative values prevail in all other bias domains in this area. The WRF@15 km domain looks quite balanced 

and therefore quite different from its 5 km counterpart. This is also confirmed by the smaller mean bias value (-1.37) in Table 

3. The domain mean values in Table 3 show a relatively large range of about seven heat waves between the maximum (33.4 

at RegCM) and minimum (26.7 at WRF@5 km) value. The E-OBS reference value of 30.9 means that in average there was 290 

approx. one summer heat wave per year in the study period. ALADIN and RACMO (31.2) come closest to this value, WRF@5 

km (26.7) shows the biggest discrepancy. COSMO-CLM, REMO, RCA4 and the two WRF runs simulated in average less heat 
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waves than the reference, ALADIN, RegCM and RACMO more. ALADIN has the lowest mean bias value (0.31). The mean 

bias values of COSMO-CLM, REMO, RCA4 and the two WRF runs are negative, the others are positive. All the SPAEF 

scores between the reference and the single RCM domains (not shown) are negative here, indicating that there is no good 295 

overall spatial agreement at all. The highest score (-0.04) is found at REMO, the lowest (-0.25) at RCA4 and the two WRF 

runs. 

 

Figure 4. Grid cell based E-OBS summer heat wave frequency pattern between 1980–2009 and differences between each 

RCM and E-OBS. 300 

   

There are no recognizable benefits of the two WRF runs either. Here, it is rather the opposite, especially regarding the WRF@5 

km run, since it shows the highest mean bias value and the biggest difference to the domain mean value in the number of heat 

waves compared to the reference. In addition, it has the lowest SPAEF value, which is not very meaningful in this case. The 
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model settings seem to have a clearly higher importance than the grid resolution. ALADIN showed the best performance in 305 

this section, closely followed by REMO. 

4.3.2 Mean heat wave duration 

Figure 5 displays the E-OBS pattern of the mean heat wave durations for the time period 1980 – 2009 and the grid cell based 

differences with the RCMs. The associated scores are shown in Table 4.  

 310 

Table 4. Mean heat wave duration metrics. 

Model Mean [n days] Mean Bias [n days] SPAEF 

COSMO-CLM 5.46 1.53 -0.65 

ALADIN 6.3 4.66 0.72 -0.07 

REMO2015 4.17 0.23 -0.13 

RegCM 4.6 4.50 0.56 -0.38 

RACMO 2.2e 4.14 0.20 -0.21 

RCA4 4.37 0.43 -0.24 

WRF@5 km 3.78 -0.16 0.06 

WRF@15 km 3.84 -0.10 -0.15 

E-OBS  3.94 
  

 

The E-OBS pattern is very uniform, the majority of the domain is covered by values between 3.75 and 4.25 days. This is also 

reflected in the domain mean value of 3.94 days (Table 4). This means that the average heat wave duration was quite close to 

the minimum length (3 days) of a heat wave. All EURO-CORDEX RCM bias domains except REMO and RACMO are 315 

prevailed by positive bias values, meaning that the models simulated too long heat episodes. The COSMO-CLM domain even 

appears to be without any negative bias grid cell. It is also the domain with the highest values. Especially the area in the 

southwest, where values up to 5 days are reached, is striking. All other bias domains are predominated by values between -1 

and 1 day. The two WRF domains are the only ones prevailed by negative bias values. In this case, the WRF@15 km domain 

is quite close to its 5 km counterpart, but again the negative bias is less pronounced in direct comparison. The patterns of 320 

REMO and RACMO are similar. The domain mean values in Table 4 are all close to each other. All EURO-CORDEX RCMs 

are above the reference value (3.94 days), the WRF runs are below. COSMO-CLM shows the biggest difference (1.52 days), 

WRF@15 km the smallest (0.1 days). COSMO-CLM is also the RCM with by far the highest mean bias value (1.53 days), 

which was to be expected from the bias maps (Figure 5). It is the only case where the mean bias is greater than 1 day. The bias 

value of 1.53 days may seem relatively small, but if it is set in relation to the domain mean values, then it accounts for a fairly 325 

large proportion. Only the two WRF runs have negative mean bias values. WRF@15 km holds the smallest (-0.10) mean bias 
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value. Here, the SPAEF values between the reference and the single RCM domains (not shown) are all negative or very low, 

which is the case for WRF@5 km (0.06). This means that again no RCM was able to satisfactorily reproduce the spatial pattern 

of the reference. COSMO-CLM holds also in this regard the worst value (-0.65).  

 330 

Figure 5. Grid cell based E-OBS summer mean heat wave duration pattern between 1980–2009 and differences between each 

RCM and E-OBS. 

 

COSMO-CLM is clearly the RCM with the weakest performance due to the weakest scores in each aspect (Table 4). WRF@15 

km is the most reliable RCM here, meaning that there are indeed some benefits for this aspect of the analysis, which are rather 335 

related to the model settings, since once again, the 15 km performs better than its 5 km counterpart. 
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4.3.3 Mean heat wave intensity 

Figure 6 provides the E-OBS pattern of the mean heat wave intensity for the time period 1980 – 2009 based on the cumulative 

heat measure. The grid cell based differences of the RCMs are also included. The relevant scores are given in Table 5.  

 340 

Figure 6. Grid cell based E-OBS summer mean heat wave intensity pattern between 1980–2009 and differences between each 

RCM and E-OBS. 

 

 

 345 
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Table 5. Mean heat wave intensity metrics. 

Model Mean [°C] Mean Bias [°C] SPAEF 

COSMO-CLM 18.9 8.88 -0.52 

ALADIN 6.3 15.6 5.66 -0.48 

REMO2015 9.8 -0.17 -0.19 

RegCM 4.6 11.7 1.73 -0.85 

RACMO 2.2e 10.9 0.90 -0.49 

RCA4 13 3.04 -0.40 

WRF@5 km 8.8 -1.17 0.03 

WRF@15 km 9.12 -0.85 0.11 

E-OBS  9.97 
  

 

The E-OBS domain looks quite uniform. A sort of band of higher values extends from the southwest to the northeast. The 

majority of the values lies within 9 to 11 °C, which is confirmed by the domain mean value of 9.97 °C (Table 5). Accounting 350 

for the mean duration (3.94 days) of heat waves from the section above, the average heat excess per day during a heat wave 

period was 2.53 °C. Regarding the RCM bias maps, the two WRF domains are again predominated by negative values and 

look quite similar. Areas of positive bias in the 15 km domain are similarly situated as in the 5 km counterpart. Some of them 

are more extensive like in northwestern part, others are smaller like in southeast. The domains of COSMO-CLM, ALADIN 

and RCA4 are prevailed by positive values, while those of REMO, RegCM and RACMO show a mixed pattern. In those 355 

domains, the areas of cold bias are similar between the models, mainly located in the southwest. They also have in common 

that the values are mostly between -5 to 5 °C. This leads to relatively small mean bias values (Table 5) due to mutual balancing. 

Maximum bias values of up to 25 °C are found at the COSMO-CLM domain in the southwestern part. The COSMO-CLM and 

ALADIN domains are basically covered with comparatively higher values. The domain mean values in Table 5 show distinct 

differences among themselves with a maximum range of 10.1 °C between COSMO-CLM and WRF@5 km. The two WRF 360 

runs and REMO are below the reference value (9.97 °C), all other models are above. REMO’s value (9.8 °C) comes closest to 

the reference, COSMO-CLM (18.9 °C) shows by far the largest difference. Its value is almost double as high as the reference. 

As inferred from the maps, REMO and the two WRF runs have negative mean bias values, while the other RCMs have positive 

ones. REMO holds the smallest value (-0.17 °C), COSMO-CLM the highest (8.88 °C), which, compared with the domain 

mean values, is a very high value. The SPAEF values between the reference and each RCM domain (not shown) are once more 365 

all negative (all EURO-CORDEX RCMs) or very low (the two WRF runs), which means that there is no satisfactory 

reproduction of the reference’s spatial structure. RegCM has the lowest value (-0.85), WRF@15 km the highest (0.11).  

COSMO-CLM is the weakest performing RCM, while REMO showed the overall best performance. This means that there are 

no real WRF benefits apparent here, except for the possible minor benefits in reproducing the spatial structure. It is striking 
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that the pattern of the WRF domains always being prevailed by negative bias runs through all aspects of the heat wave 370 

characteristics as well as the number of heat wave days. 

4.4 Heat wave trends 

Figure 7 presents the grid cell based results of the Mann-Kendall trend test for the annual number of heat waves in the study 

period 1980 – 2009 for all RCMs and the E-OBS reference. A summary for each signal and data set is given in Table 6. In this 

context it should be noted that Mann-Kendall trend test provides information about whether there is a monotonic positive, 375 

negative or no trend in a time series at a certain level of significance (here 0.05). It does not give information about exact trend 

values.  

 

Table 6. Annual number of summer heat wave overall metrics. 

Model negative [%] neutral [%] positive [%] 

E-OBS 0 88 12 

COSMO-CLM 0 99.74 0.26 

ALADIN 6.3 0 99.97 0.03 

REMO2015 0 99.56 0.44 

RegCM 4.6 0 90.35 9.65 

RACMO 2.2e 0.03 99.95 0.03 

RCA4 0 95.46 4.54 

WRF@5 km 0 96.87 3.13 

WRF@15 km  0 96.09 3.91 

 380 

The domains of COSMO-CLM, ALADIN, REMO and RACMO are almost completely covered with no trend signals. This 

also confirmed by the values in Table 6, where each of these RCMs have more than 99 % of their grid cells in the neutral 

section. RegCM and RCA4 have distinct areas of positive trends, but in different areas. WRF@5 km has also positive trend 

areas, but less concentrated. In the E-OBS reference domain there are also concentrated areas of positive trends, mainly in the 

southwest and in the northern central area. These locations mostly do not agree with those from the RCMs. The WRF@15 km 385 

domain also shows positive trend grid cells, but at different areas than the other RCMs. It shows the highest spatial agreement 

with the reference, especially in the central part. It is striking that there are actually no grid cells with negative i.e. decreasing 

trend in any domain, which is also confirmed in Table 6. The table further confirms that the majority of the grid cells is covered 

by no trend signals. By far the largest proportion of positive grid cells can be found in E-OBS (12 %), followed by RegCM 

(9.65 %), RCA4 (4.54 %) and the WRF runs (3.13 % and 3.91 %). All other runs are in the less than 1 % range. This shows 390 
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that the WRF@15 km run is not only from the locations, but also from the shares of the signals closer to the reference than its 

5 km counterpart.  

 

Figure 7. Grid cell based trends of the number of annual summer heat waves for 1980–2009 based on the Mann-Kendall Test 

for E-OBS and each RCM. 395 

 

This section reveals that, according to the E-OBS reference, if there is a trend in number of heat waves, it is only positive, 

meaning that the frequency is increasing with time. But this is not the case everywhere. All models simulate too few pixels 

with positive trends. Regarding WRF, any possible benefits would be related to the model settings rather than to the grid 

resolution, since the WRF@15 km is more accurate than its 5 km counterpart. 400 
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4.5 The heat wave event 2003 

4.5.1 Cumulative heat 

Figure 8 shows the E-OBS cumulative heat pattern of the summer season 2003 and the grid cell based differences with each 

RCM. The associated scores are given in Table 7.  

 405 

Figure 8. Grid cell based E-OBS summer 2003 cumulative heat pattern and differences between each RCM and E-OBS. 

The E-OBS domain shows a quite clear gradient from the southwest to the northeast with decreasing values. The values in the 

southwest are very high, they have accumulated well above 100 °C during that summer season, making the heat wave most 

pronounced in this region. These values underline the high intensity of the 2003 heat wave. The mildest values of up to 10 °C 

heat excess are in the northeastern regions, making them the regions least impacted by the heat wave. COSMO-CLM, REMO, 410 

RegCM and RACMO show pronounced cold bias values in the southwest of their domains. This means that they were not able 
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to satisfactorily reproduce the particularly high values of the reference in these regions, showing bias values of up to -120 °C. 

These bias values indicate that the models simulated only weak or even no heat episodes at all in regions, where the reference 

showed the most pronounced values. REMO, RACMO and WRF@5 km are prevailed by cold bias values, the remaining 

RCMs except WRF@15 show mixed patterns, where the northern half is prevailed by warm, the southern half by cold bias, 415 

leading to a sort of bipartition. The WRF@15 km is evenly covered with values of both signs. The WRF@5 km pattern is most 

uniform with relatively low bias values all over the domain. It is striking that in contrast to the previous sections, the WRF 

domains are not the only ones prevailed by negative respective cold bias values here. In direct comparison with its 5 km 

counterpart, the WRF@15 km domain has much more areas with warm bias. The domain mean values in Table 7 show a large 

discrepancy among each other with a range of 52.7 °C between RCA4 (62.3 °C) and REMO (9.6 °C). The reference value of 420 

E-OBS is 45.4 °C. Considering the mean heat wave intensity (9.9 °C) for the whole study period from Sect. 4.3.3, this value 

is more than four times higher and thus very remarkable and it illustrates the great severity of this heat wave. ALADIN (43.2 

°C) is closest to the reference value, REMO holds the largest difference. Regarding the mean bias values, REMO (-35.9 °C) 

and RACMO (-34 °C) have the highest values, ALADIN (-2.2 °C) the lowest. It needs to be considered that in the RCMs with 

the bipartition pattern mentioned above (COSMO-CLM, ALADIN and RegCM), the values cancel each other out, leading to 425 

relatively low mean bias values, depending on the degree of balance. Only RCA4 holds a positive mean bias value (16.9 °C). 

This underlines that the models rather underestimate the intensity of this heat wave period. The WRF@5 km mean bias (-12.9 

°C) is clearly higher than that of its 15 km counterpart (-3.4 °C). Here there are some distinct differences between the SPAEF 

values. While they are negative for the most EURO-CORDEX RCMs or very low (ALADIN and RCA4), the two WRF runs 

show relatively high values (0.77 for WRF@5 km and 0.72 for WRF@15 km). This means that the WRF runs reproduced the 430 

spatial structure of the reference reasonably well. RegCM holds the lowest (-0.69) SPAEF value.  

 

Table 7. Cumulative heat 2003 metrics. 

Model Mean [°C] Mean Bias [°C] SPAEF 

COSMO-CLM 25.6 -19.8 -0.38 

ALADIN 6.3 43.2 -2.2 0.26 

REMO2015 9.6 -35.9 -0.04 

RegCM 4.6 35.9 -9.5 -0.69 

RACMO 2.2e 11.4 -34 -0.03 

RCA4 62.3 16.9 0.09 

WRF@5 km 32.5 -12.9 0.77 

WRF@15 km 42.1 -3.4 0.72 

E-OBS  45.4 
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There are distinct differences between the single models in this section. ALADIN is the RCM with the overall best 435 

performance, REMO the one with the worst. There are pronounced benefits of the WRF runs visible in the reproduction of the 

spatial structure of the reference. In this regard, the 5 km WRF run performs slightly better than its 15 km counterpart. In terms 

of reproducing the reference domain mean value and of mean bias value, the 15 km WRF run outperforms its 5 km counterpart.  

4.5.2 Maximum duration 

Figure 9 gives the E-OBS pattern of the maximum heat wave duration during the 2003 summer season along with the grid cell 440 

based differences with each RCM. The corresponding values are given in Table 8.   

 

Table 8. Maximum heat wave duration 2003 metrics. 

Model Mean [n days] Mean Bias [n days] SPAEF 

COSMO-CLM 6.91 -1.76 -0.64 

ALADIN 6.3 6.34 -2.33 -0.17 

REMO2015 4.30 -4.37 -0.42 

RegCM 4.6 5.51 -3.15 -0.69 

RACMO 2.2e 2.87 -5.80 -0.44 

RCA4 8.94 0.27 -0.35 

WRF@5 km 7.72 -0.95 0.19 

WRF@15 km 8.86 0.19 0.07 

E-OBS  8.67 
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 445 

Figure 9. Grid cell based E-OBS summer 2003 heat wave maximum duration pattern and differences between each RCM and 

E-OBS. 

The E-OBS domain shows a sort of bipartition with the highest values in the southwestern and lower values in the northeastern 

part. This matches the impressions from the section above, where the highest heat excess values were also found in the 

southwest (Figure 8). Due to the longest durations of up to 16 days, the high heat excess values could accumulate. It should be 450 

noted that this is not only a matter of duration, but also of excess values. In the northeastern part there are areas with values 

ranging between 0 – 3. Since the minimum duration of a heat wave episode was defined to be three days, it means that in these 

regions no heat episode took place in that summer period. This is also in line with the heat excess pattern (Figure 8), which 

shows values between 0 and 10 °C in some of these areas. The RCM bias patterns roughly match those in Figure 8. COSMO-

CLM, REMO, RegCM and RACMO have strong negative bias values of up to -15 days in the southern and southwestern areas. 455 

Since the E-OBS domain shows the highest values of up to 15 days in some parts of those areas, it further confirms that the 
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models actually did not simulate a heat wave episode in some parts of these areas, where the reference shows the most distinct 

values. It further underlines this big shortcoming of the models. The northern parts in COSMO-CLM and RCA4 are prevailed 

by positive bias values. COSMO-CLM is the model with the largest areas of high positive bias values of up to 15 days in the 

eastern parts. This is the region where the E-OBS reference only shows weak or even no heat wave episodes, meaning that the 460 

model does the opposite here compared to the southwestern region, simulating relatively strong heat episodes although there 

were none according to reference. In almost each domain there are high bias values in the Alps region in the south. With the 

exception of RCA4, these bias values are all negative. In line with the section above, the WRF domains are not the only ones 

prevailed by negative values. In the southwestern regions, they both show the lowest bias values of all RCMs. The WRF@15 

km domain shows the most balanced pattern between positive and negative bias values with most of them ranking in the 465 

relatively low range. This is confirmed by the lowest mean bias values (0.19 days) in Table 8. The domain mean values in 

Table 8 reveal that the E-OBS reference value (8.67 days) is one of the highest, only exceeded by RCA4 (8.94 days) and 

WRF@15 km (8.86 days). This is also reflected in the mean bias values. It indicates that the models tend to simulate shorter 

durations. The WRF@15 km value is also the closest to the reference, while RACMO (2.87 days) shows the biggest difference. 

It is also by far the lowest value. The model also holds the highest mean bias value (-5.80 days). It needs to be remembered 470 

that the low mean bias values of WRF@15 km and RCA4 (0.27 days) also result from the contradictory nature of their values. 

Analogous to the cumulative heat, the two WRF runs hold the best SPAEF values (0.19 and 0.07, respectively), but on a much 

lower level, making them not very meaningful. The score of the WRF@5 km domain is clearly better than that of its 15 km 

counterpart. All SPAEF values of the EURO-CORDEX RCMs are negative. The lowest score is found at RegCM (-0.69). 

Overall, no model achieves to reproduce the spatial structures satisfactorily.  475 

According to the scores, WRF@15 km shows the best overall performance in this section, RACMO the worst. This means that 

once more WRF@15 km outperformed its 5 km counterpart. The great weakness of COSMO-CLM of simulating oppositely 

needs also to be considered, since this may not be reflected in the values of the table. The fact that the WRF runs, especially 

the 5 km run, in this as well as in the previous section were not the only models prevailed by cold respective negative bias 

values (Figure 8 and Figure 9) like in all the previous sections above, highlights that for a single event, the situation can be 480 

very different compared with the overall picture for the complete study period provided in the Sect. 4.2 and 4.3.  

5. Discussion 

Regarding the Tmax reproduction in Sect. 4.1, Silva et al. (2022), who compared monthly Tmax values from six historical runs 

from different GCM-RCM combinations from CORDEX-CORE with ERA5 as reference for the Pantanal region for the period 

April - October between 1981 and 2005, found temporal, area averaged correlation values between 0.42 and 0.67. This is 485 

distinctly less than in our case. The different RCM forcings and focus on different period and region must be considered 

though. As for the bias values (Table 1), in previous studies, a negative bias of daily Tmax was found for the Central European 
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region (Nikulin et al., 2011; Plavcová and Kyselý, 2011). Here, we found both, positive and negative bias, depending on the 

RCM.  

Regarding the heat wave characteristics (Sect. 4.3), there are different reasons discussed in the literature for the over and 490 

underestimation by the models. Lhotka et al. (2018b) assume that the overestimation of heat wave frequency and duration of 

major heat waves, which they found in some RCMs, is related to the large-scale circulation and soil moisture depletion. 

Underestimation of these events, on the other hand, is associated with too-moist summertime conditions. Vautard et al. (2013), 

who, like in this study, also found that simulated heat waves from the EURO-CORDEX RCMs were too long and intense (not 

the case for REMO here), attribute this to biases in the modelled temperature. It must be noted that they used the daily mean 495 

instead of maximum temperature for their heat wave definition. Another possible reason they give is a connection between 

land–atmosphere feedback and overestimated heat wave intensity in models. Lhotka and Kyselý (2015a) also go into this 

direction, since they found a connection between heat wave intensity and precipitation during and before these events. Vautard 

et al. (2013) further found that coarser resolution lead to very persistent heat waves. This is also how it looks here at first, if 

only the WRF@5 km run is compared with the EURO-CORDEX RCMs. The WRF@15 km run shows that this cannot be 500 

related to resolution, but to setting effects, since it is coarser then the EURO-CORDEX runs. It must be noted that the resolution 

differences in Vautard et al. (2013) (50 km vs. 12.5 km) were much more distinct than in our case. According to Plavcová and 

Kyselý (2019), an overestimation of circulation super types may contribute to the development of too-long heat waves in some 

simulations. From an overall perspective, the heat wave characteristics are generally quite well captured in terms of 

spatiotemporal mean values (Table 3 - 5). Lin et al. (2022) came to similar findings, even though they used different heat wave 505 

metrics. 

As for the heat wave event 2003 (Sect. 4.5), Lin et al. (2022) associate the high bias values in the Alps region for the maximum 

durations with the representation of orographic effects. Russo et al. (2016) also found a big discrepancy in the RCM’s capability 

to simulate a single major heat wave event. In fact, only one out of 13 RCMs was able to capture the event. They attribute this 

to some model deficiency simulating really extreme heat waves or to the length of the analyzed time period (1979 – 2005). 510 

This shows that increased resolution does not lead to improved reproduction of severe heat waves, which was found in Lhotka 

et al. (2018a). It must be considered that the difference between the resolutions they compared (12.5 vs. 50 km) was much 

larger than in our case. 

In each section of this study we found an inter-model spread. This is in line with previous heat wave related model employing 

studies, e.g., Vautard et al. (2013), Gibson et al. (2017), Feron et al. (2019) and Silva et al. (2022). Vautard et al. (2013), who 515 

also used ERA-Interim driven EURO-CORDEX outputs, assume several potential sources of spread: the method to process 

boundary conditions in the model, the convection treatment, the different parameterizations, which are more pronounced in 

larger domain sizes and specific weather situations and the way in which the interactions between land surfaces and the 

atmosphere are accounted for in the models. The latter refers to the uncertainty of partitioning between sensible and latent heat 

flux as well as of radiation fluxes (Lenderink et al., 2007; Stegehuis et al., 2012).  520 
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In each of the heat wave related sections, no evidence is found that increased resolution leads to better results in reproducing 

the related metrics. In fact, the WRF@15 km always performed better than its 5 km counterpart. This is partly in line with the 

results of previous studies. No benefits of increased resolution were also found in Plavcová and Kyselý (2019), who compared 

25 km and 50 km resolution and in Molina et al. (2020) (12.5 km vs. 50 km). Cardoso et al. (2019), who also compared 12.5 

and 50 km resolution, found a slight benefit of increased resolution. Careto et al. (2022) and Lin et al. (2022) compared 0.11° 525 

RCM outputs with the outputs of the driving data in much higher, different resolutions. In both studies benefits of the increased 

resolution were found, particularly for coastal regions. Vautard et al. (2013) (12.5 vs 50 km) identified partly benefits of 

increased resolution, depending on the aspects of analysis. They found that increased resolution leads to reduction in biases in 

the temperature 90th percentile as well as in the heat wave persistence. They suspect that smaller scale and higher frequency 

variability is better resolved in higher resolutions. Local bias improvements were found in some coastal regions here too. Once 530 

more it is noted that in each of the mentioned studies, the difference between the employed resolutions is much higher than in 

our case here. We assume from our results that a resolution increase from an already relatively high resolution, in this case 

12.5 km, has limited to negligible impact. One fact that also needs to be considered is the original resolution difference between 

E-OBS (12.5 km) and WRF@5 km. For certain aspects, structures from E-OBS may be better represented in resolutions closer 

to it. This could be a reason why the 15 km WRF runs performs better with otherwise the same settings. Furthermore, it needs 535 

to be kept in mind that in the E-OBS data set extreme values tend to be smoothed out due to interpolation processes (Haylock 

et al., 2008; Hofstra et al., 2009). This can mean that for certain aspects of the analysis, where the models showed cold or 

negative bias, discrepancy to the true values might be even bigger. Hofstra et al. (2009) emphasize, that this effect is more 

pronounced for precipitation though.  

The three RCMs with the overall best performances are ALADIN, REMO and WRF@15 km. COSMO-CLM showed the 540 

weakest overall performance. If this is considered, the choice of the parameterization schemes seems to play a minor role, 

since ALADIN, REMO and WRF have all different schemes for the individual physics. This finding is opposite to that from 

Davin et al. (2016) who identified the land surface scheme as highly important for a proper simulation of temperature. The 

land surface scheme is determining for two crucial factors: the soil moisture and leaf area index (LAI). If the LAI within the 

land-surface model is based on climatological values instead of dynamical calculations, this can increase evapotranspiration 545 

and thus lead to a cooling effect, which reduces the maximum temperature values. The connection between adjacent soil 

moisture conditions and heat extremes is well documented (e.g., Brabson et al., 2005; Fischer et al., 2007; Lorenz et al., 2010; 

Hirschi et al., 2011; Jaeger and Seneviratne, 2011; Liu et al., 2013). One possible determiner for bias can further be the 

microphysics scheme, which is responsible for the cloud processes. In earlier studies, the role of cloud cover for the (maximum) 

temperature simulation is highlighted. An increased cloud cover leads to a greater fraction of reflected solar radiation, which 550 

in turn leads to cooling of Tmax (Groisman et al., 2000; Sun et al., 2000). Lobell et al. (2007) found that cloud cover is 

responsible for higher daily Tmax variability compared to the daily mean values. They consider the cloud cover especially 

important during the summer period. According to Liang et al. (2008), biases in simulated radiation budgets can lead to errors 

in surface temperatures. Hamdi et al. (2012) found strong correlations of warm bias with cloud cover representation. However, 
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since all models in this study were ran with different microphysics schemes (Table 2 in Petrovic et al. (2022)), relevant 555 

conclusions cannot really be drawn. Interestingly, in the study of Lhotka et al. (2018b), COSMO-CLM in combination with a 

driving GCM was among the RCMs with the best performances in simulating major European heat waves. This could indicate 

the high importance of the driving data, which is also highlighted by Molina et al. (2020). It is further underlined by the fact 

that RACMO and RCA4, driven by the same GCM, also showed best performances, while in our study they did not stand out. 

It is evident that the WRF runs, compared to the EURO-CORDEX RCMs, often showed rather negative/colder bias values. 560 

This might be connected with the employed schemes in the WRF simulation (Table 2 in Petrovic et al. (2022)), since there are 

no commonalities with the other runs at the individual physics. Moreover, a connection between the Tmax bias (Table 1) and 

the overall performance does not seem to exist, since COSMO-CLM has the lowest mean bias value (-0.16 °C), but the worst 

overall performance, while on the other hand RCA4, which holds the highest mean bias value (-2.40 °C), does not show a 

significant bad performance. There are model output employing heat wave studies in which it has been found that the ensemble 565 

mean outperforms the individual models runs, e.g., Russo et al. (2016), Wang et al. (2019a), Lin et al. (2022) and Kim et al. 

(2023). Here, ensemble mean values were not considered since a focus of the study is about the impact of different model 

resolution and settings and evaluation of single model performances. 

According to Plavcová and Kyselý (2019), biases in the simulations of atmospheric circulation play a crucial role for the 

simulation of temperature extremes. This is why they claim that an improvement in this field will be among the most important 570 

steps towards better reproduction of extreme temperature events and thus also lead to more credibility of future projections. 

It is striking that there are some significant differences in the outcomes compared to the drought study (Petrovic et al., 2022) 

in which the same data sources were used as mentioned above. While it was found that all models performed at similar levels 

for the drought characteristics, there are some significant differences between the individual performances here for the heat 

wave characteristics, highlighting that the choice of model can be crucial. In addition, it was shown that the WRF settings and 575 

increased resolution were particularly beneficial for reproducing drought trends. This is not the case for heat wave trends. This 

suggests that these benefits are highly related to the simulation of precipitation, the most important variable for drought, which 

is not a factor here. The different time scales could also be a factor. Unlike heat waves, where the minimum duration in this 

study is three days, droughts are prolonged events with a minimum duration of usually at least one month. For this reason, 

monthly values were considered in the drought study, while daily values were used here. Regarding the reproduction of the 580 

2003 drought and heat wave event, there are pronounced differences between the models in both studies. Interestingly, REMO 

shows the worst performance in this respect in both cases and significantly underestimates the drought and heat wave 

conditions, respectively. 

6. Conclusions 

A heat wave analysis for Germany and its near surroundings for the period 1980-2009 was performed. The impact of increased 585 

model resolution and appropriate model configuration on the reproduction of heat wave metrics based on the Tmax simulation 

https://doi.org/10.5194/nhess-2023-91
Preprint. Discussion started: 19 June 2023
c© Author(s) 2023. CC BY 4.0 License.



28 

 

is addressed. For this purpose, we employ an ensemble of six ERA-Interim-driven EURO-CORDEX RCMs of 12.5 km 

horizontal grid resolution and an ERA Interim-driven high-resolution (5 km) WRF run, whose setup was tailored to the target 

area. The model outputs are evaluated with regard to their ability to reproduce Tmax and heat wave characteristics based on it, 

trends and the major event in 2003. E-OBS data is used as reference. 590 

WRF with its increased resolution and tailored model settings is shown to be not necessarily beneficial for improved 

performance in reproducing heat indices. Benefits are somewhat present only for the reproduction of the mean heat wave 

durations and for the reproduction of the spatial structures of the cumulative heat values for the heat wave event 2003. In fact, 

the WRF@15 km run outperforms its 5 km counterpart in each section. Thus, we conclude that (for the selected model 

configurations) increased resolution does not contribute to better performances regarding heat wave metrics, when both 595 

compared resolutions are already relatively high, which is the case here (12.5 km vs. 5 km). Since three models, namely 

ALADIN, REMO and WRF@15 km show the overall best performances, we further conclude that the tailored model settings 

of WRF only have limited benefits for the reproduction of the heat wave metrics. The daily Tmax values are reproduced 

relatively well by all models, which is also underlined by the rather low mean bias values in Table 1. Regarding the domain 

mean conditions of the overall characteristics, all models show reasonable performances for the heat wave frequency and mean 600 

duration, while this does not go for the mean intensity. The spatial agreement with the reference is not satisfactory for any 

RCM and section with the exception of the two WRF runs in the reproduction of the cumulative heat pattern for the 2003 

event. In general, despite the same forcing by ERA-Interim, the RCMs exhibit a significant spread in their outputs. This is 

especially pronounced for the 2003 event, which underlines the difficulty of the models to reproduce single major events. 

Regarding the heat wave trends, the reference shows that, if there is a trend present, it is only increasing, indicating increases 605 

in the number of heat waves with time. The RCMs struggle with reproducing these trends. If trends are indicated, they are 

mostly not spatially accurate. All RCMs underestimate the proportion of grid cells with increasing trends. No specific physics 

scheme or configuration can be shown to be especially beneficial for the reproduction of the heat wave metrics. Furthermore, 

there seems to be no correlation between the RCM bias values (Table 1) and the respective RCM performances. According to 

the E-OBS reference, heat waves occurred about 31 times in the study period with an average duration of about 4 days and 610 

average intensity of about 10 °C. This equals an average heat excess per day during a heat wave period of about 2.5 °C.  

Our results suggest that a resolution of 12.5 km or even 15 km, as shown with the WRF@15 km run, is sufficient to reach 

similar findings to those obtained with finer resolutions. The study further reveals that the choice of the RCM can be crucial, 

due to the partly enormous differences in the performances. Furthermore, it is shown that the adjusted model settings to the 

specific target region of WRF only have limited impacts, suggesting that for the reproduction of Tmax and thus heat waves this 615 

is a less important factor. The results may guide in the selection of suitable RCMs for certain aspects of heat wave analysis in 

Germany and similar regions. Not only in a historical context, but also for future projections. 
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